A convergence theorem for Lebesgue-Stieltjes integrals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Substitution Rule for Lebesgue–stieltjes Integrals

We show how two change-of-variables formulæ for Lebesgue–Stieltjes integrals generalize when all continuity hypotheses on the integrators are dropped. We find that a sort of “mass splitting phenomenon” arises. Let M : [a, b]→ R be increasing. Then the measure corresponding to M may be defined to be the unique Borel measure μ on [a, b] such that for each continuous function f : [a, b] → R, the i...

متن کامل

The Lebesgue Monotone Convergence Theorem

For simplicity, we adopt the following rules: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F , G are sequences of partial functions from X into R, I is a sequence of extended reals, f , g are partial functions from X to R, s1, s2, s3 are sequences of extended reals, p is an extended real number, n, m are natural numbers, x is an element of X...

متن کامل

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

The theorem proved here extends the author's previous work on Chebyshev series [4] by showing that if f(x) is a member of the class of so-called "Stieltjes functions" whose asymptotic power series 2 anx" about x = 0 is such that ttlogjaj _ hm —;-= r, «log n then the coefficients of the series of shifted Chebyshev polynomials on x e [0, a],2b„Tf(x/a), satisfy the inequality 2 . m log | (log |M) ...

متن کامل

Vitali Convergence Theorem for Upper Integrals

It is shown that the Vitali convergence theorem remains valid for the -upper integral. Using this result we prove completeness of the space L( ) with respect to the k kp-upper norm for 1 p < 1 , describe convergence of its elements in terms of the space L( ) for 1 p < 1 , give a necessary and sufficient condition for a sequence from L( ) to converge in the k kp-upper norm to a function from L( ...

متن کامل

A Generalized Itô’s Formula in Two-Dimensions and Stochastic Lebesgue-Stieltjes Integrals

A generalized Itô formula for time dependent functions of two-dimensional continuous semi-martingales is proved. The formula uses the local time of each coordinate process of the semi-martingale, left space and time first derivatives and second derivative ∇1 ∇ − 2 f only which are assumed to be of locally bounded variation in certain variables, and stochastic Lebesgue-Stieltjes integrals of two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1943

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1943-08027-5